
LATEX TikZposter

Ceramist: Certifying Certainty and Uncertainty
Kiran Gopinathan (Slack: @kiran gopinathan), Ilya Sergey

National University of Sinagpore

Ceramist: Certifying Certainty and Uncertainty
Kiran Gopinathan (Slack: @kiran gopinathan), Ilya Sergey

National University of Sinagpore

1 Bloomfilters &AMQs
What are they?

Approximate Membership Query structures (AMQs) are a general
class of probabilistic data structures that provide compact encodings
of sets of objects, trading increased space e�ciency for a weaker
membership test.

x

h1 h2 h3 h4 h5

b1 b2 b3 b4 b5 b6 b7 b8

A Bloomfilter is an example of an
AMQ, consisting of a bit vector
and a sequence of hash functions.

To insert a value x: Apply the
hashes to x, and raise the se-
lected bits.

To testmembership for x: Apply the hashes to x, and check that the
corresponding bits are raised.

Properties of Bloomfilters
The operations on Bloomfilters work together to ensure two key
properties that are common to all AMQs:
•No False Negatives - any item that has been previously inserted
will always correctly be tested as being in the Bloomfilter.

•False Positive Rate - there is a small probability that a value not in
the Bloomfilter may still test positve.

Practical applications
The properties of AMQs make them a particularly suitable compo-
nent for providing caching-based optimizations.
Bloomfilters themselves are very widely used, and can be found in
many modern software tools, collectively reaching over millions of
users:

•Google Chrome [1]
•Apache Cassandra [2]
•Venti Network Storage System [3]

2 Ahistory of errors...
Prior Theoretical Analysis

Reasoning about probability is hard, and it is easy to make mistakes
by overlooking interdependencies.
This is the case with the analysis of Bloomfilters, which have had a
history of incorrect proofs:
•Bloom’s original paper [4] failed to account for subtle dependen-
cies leading to an incorrect false positive rate.

•A later study [5] found the error, but their correction also used in-
correct definitions, marring the analysis.

•Many subsequent papers, and even textbooks [6], still reference
the incorrect bound.

3 Evening the “odds” in Coq!
Eliminating errorswith proof assistants

Following Coq’s established history of being used to correct in-
valid reasoning, we developed a Coq framework for reasoning about
AMQs,modelling hash operations as randomoracles, and using the
probabilitymonad to encode random outcomes.
We find that we can decompose the behaviours and proofs of
Bloomfilters into deterministic and probabilistic subcomponents:
•Deterministic - setting and raising bits of a bit vector given the
hash outputs.

•Probabilistic - hashing the input over a series of hash functions to
get a list of indices.
Through this technique, we provide the first certified proof of the
true false positive rate of a Bloomfilter.

1
mk(l+1)

m

∑
i=1

iki!
(

m
i

){
kl
i

}
,

where
{

s
t

}
stands for the Stirling number of the second kind.

We show this using an analogy of throwing balls into bins, and as a
bonus produce the firstmechanised proof of Stirling numbers of the
2nd kind.
Looks quite complicated, what about other similar structures?

4 Certified AMQs for free

Decomposing AMQs intomodular subcomponents

Discoveries:
•The previous decomposition is actually common tomost AMQs
•Many of the patterns used in AMQs can be generalized into a
higher-order family of abstract “blocked” AMQs.
Using this, we construct a collection of reusable subcomponents,
which can be mixed and matched together to build custom AMQs:

AMQ
AMQHash

Bloom Filter

Counting BF

Quotient FilterBlockedAMQ

Blocked Quotient FilterCounting Blocked BF

HashHash Vector Multiplexed Hash

AMQMap

Legend

Instantiates

Used as component

Used for reduction

AMQ Interface/partial impl.

Hash Implementation

The following are some of the AMQs we construct:
•CountingBloomfilter - a variant of theBloomfilter that uses coun-
ters instead of bits to support removing elements.

•Quotientfilter - a filter structure that uses fingerprinting and quo-
tienting to optimize for cache usage.

•Blocked Bloom filter - a filter using hash functions to multiplex
queries between several constituent Bloomfilters.
Futurework: Synthesis of AMQ-based optimizations.
Interested? Ping@kiran gopinathan on PLDI slack to have a chat.References

[1] Google chrome safe browsing. [Online]. Available: https://src.chromium.org/viewvc/chrome/trunk/src/chrome/browser/safe_browsing.
[2] Bloomfilters - Apache Cassandra. [Online]. Available: https://cassandra.apache.org/doc/latest/operating/bloom_filters.html.
[3] S. Quinlan and S. Dorward, “Venti: A new approach to archival storage.,” in FAST, vol. 2, 2002, pp. 89–101.
[4] B. H. Bloom, “Space/time trade-o�s in hash coding with allowable errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.
[5] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison, M. Smid, and Y. Tang, “On the false-positive rate of Bloom filters,” Information Processing Letters, 2008.
[6] M. Mitzenmacher, “Compressed Bloom filters,” IEEE/ACM Transactions on Networking, vol. 10, no. 5, pp. 604–612, 2002.

https://src.chromium.org/viewvc/chrome/trunk/src/chrome/browser/safe_browsing
https://cassandra.apache.org/doc/latest/operating/bloom_filters.html

