CERAMIST: Certifying Certainty and Uncertainty

Kiran Gopinathan, Ilya Sergey National University of Singapore

When clicking on a malicious url....

When clicking on a malicious url....

...show a warning to the user.

Store locally?

Store locally?

Too large!

Store locally?

Send to server?

Too large!

Store locally?

Too large!

Send to server?

No privacy!

Use a **Bloomfilter**...

Too large!

No privacy!

Use a **Bloomfilter**...

...to approximately track bad urls.

Too large!

No privacy!

1 No False Negatives

(2)- Low False Positives

1 No False Negatives

... to catch all bad urls.

2 - Low False Positives

1 No False Negatives

... to catch all bad urls.

2 - Low False Positives

... to **minimize** privacy violations.

1 No False Negatives

... to catch all bad urls.

**Supposedly Low False Positives

2 - Low False Positives

... to **minimize** privacy violations.

1 No False Negatives

... to catch **all** bad urls.

Certified

Low False Positives

... to **minimize** privacy violations.

Roadmap

What are Bloomfilters?

Encoding in Coq

Generalizing to other structures

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

$$h_1 h_2 h_3 h_4 h_5$$

Query

X

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

No False Negatives!

X

 $h_1 \mid h_2 \mid h_3 \mid \cdots \mid h_k$

 $b_1 b_2 b_3 b_4 b_5 b_6 \cdots b_m$

False positives

False positives

y?

$$h_1 \mid h_2 \mid h_3 \mid \cdots \mid h_k$$

$$b_1 b_2 b_3 b_4 b_5 b_6 \cdots b_m$$

False positives

False positives

False positives rate

False positives rate

Space/Time Trade-offs in Hash Coding with Allowable Errors

Burton H. Bloom Computer Usage Company, Newton Upper Falls, Mass,

Let ϕ'' represent the expected proportion of bits in the hash area of N'' bits still set to 0 after n messages have been hash stored, where d is the number of distinct bits set to 1 for each message in the given set.

$$\phi'' = (1 - d/N'')^n. \tag{16}$$

A message not in the given set will be falsely accepted if all d bits tested are 1's. The expected fraction of test messages, not in M, which result in such errors is then

$$P'' = (1 - \phi'')^{d}. \tag{17}$$

kn

bund

Space/Time Trade-offs in Hash Coding with Allowable Errors

Burton H. Bloom

Network Applications of Bloom Filters: A Survey

Andrei Broder and Michael Mitzenmacher

the probability of a false positive is

 $(1-\rho)^k \approx (1-p')^k \approx (1-p)^k.$

(17)

(16)fall res,

Mass. in the e been set to

bund

Mass. in the

Burton H. Bloom IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006 Let d

Net

Bla

Longest Prefix Matching Using Bloom Filters Sarang Dharmapurikar, Praveen Krishnamurthy, and David E. Taylor, Member, IEEE

be detected as a possible member of the set, all k bit locations generated by the hash functions need to be 1. The probability that this happens, f, is given by

$$f = \left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k.$$
(1)

the probability of a false posic. $(1-\rho)^k \approx (1-p')$

Space/Time Trade-offs in Hash Coding with

Compressed Bloom Filters

Michael Mitzenmacher, Member, IEEE

we make the simplifying assumption of independence for ease of exposition.) The probability of a false positive is thus

$$\left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \approx \left(1 - e^{-kn/m}\right)^k = (1 - p)^k.$$

suppens,
$$f$$
, is given by
$$f = \left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k.$$

the probability of a false position
$$(1-\rho)^k \approx (1-p^i)$$
 (1)

Space/Time Trade-offs in Hash Coding with

Compressed Bloom Filters

Michael Mitzenmacher. Member. IEEE

we make the simplif Wrong! dependence for ease of exposition.) The probability of the positive is thus

$$\left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \approx \left(1 - e^{-kn/m}\right)^k = (1 - p)^k$$

ppens, f, is given by

$$f = \left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k.$$

$$(1 - p')$$

he probability of a land a

(1)

 $(1-\rho)^k \approx (1-p)$

In 2008:

Space/Time Trade-offs in Hash Coding with

ON THE FALSE-POSITIVE RATE OF BLOOM FILTERS

Prosenjit Bose

Hua Guo Jason Morrison

Evangelos Kranakis Michiel Smid Anil Maheshwari Yihui Tang Pat Morin

School of Computer Science Carleton University

{jit.hguo2.kranakis,maheshwa,morin,morrison,michiel,v_tang}@scs.carleton.ca

 $f = \left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k$ (1 - p')

(1)

In 2008:

Space/Time Trade-offs in Hash Coding with

ON THE FALSE-POSITIVE RATE OF BLOOM FILTERS

Prosenjit Bose

Hua Guo Jason Morrison

Evangelos Kranakis Michiel Smid Anil Maheshwari Yihui Tang Pat Morin

School of Computer Science
Carleton University
{iit.hguo2,kranakis.maheshwa.morin.morrison.michiel.y_tang}@scs.carleton.ca

*still had errors!

Hash functions as random oracles

Certified

False positive rate of Bloomfilters:

$$\frac{1}{m^{k(l+1)}} \sum_{i=1}^{m} i^{k} i! \binom{m}{i} \begin{Bmatrix} kl \\ i \end{Bmatrix}$$

Deterministic

Can we generalize BFs?

Can we generalize BFs?

Counting Bloomfilter

 $Bit \rightarrow Counter$

Bloomfilter

Counting Bloomfilters

Bloomfilter

Counting Bloomfilters

Bloomfilter

Quotient Filters

Counting Bloomfilters

Bloomfilter

Quotient Filters

Counting Bloomfilters

Bloomfilter

Blocked Quotient Filter

Quotient Filters

Counting Bloomfilters

Bloomfilter **Ver**

Verification?

Blocked Quotient Filter

Verifying AMQs

- Decomposition can be generalized
- Massive proof reuse
- Properties for free

Query

 $h_1 h_2 h_3 h_4 h_5$

Insert

Insert

 $h_1 h_2 h_3 h_4 h_5$

Insert

Insert

Verifying AMQs

The End