CERAMIST: Certifying Certainty and Uncertainty Kiran Gopinathan, Ilya Sergey National University of Singapore ### When clicking on a malicious url.... ### When clicking on a malicious url.... ...show a warning to the user. ### Store locally? ### Store locally? Too large! Store locally? Send to server? Too large! Store locally? Too large! Send to server? No privacy! Use a **Bloomfilter**... Too large! No privacy! Use a **Bloomfilter**... ...to approximately track bad urls. Too large! No privacy! 1 No False Negatives (2)- Low False Positives 1 No False Negatives ... to catch all bad urls. 2 - Low False Positives 1 No False Negatives ... to catch all bad urls. 2 - Low False Positives ... to **minimize** privacy violations. 1 No False Negatives ... to catch all bad urls. **Supposedly Low False Positives 2 - Low False Positives ... to **minimize** privacy violations. 1 No False Negatives ... to catch **all** bad urls. **Certified** Low False Positives ... to **minimize** privacy violations. # Roadmap What are Bloomfilters? Encoding in Coq Generalizing to other structures b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈ $$h_1 h_2 h_3 h_4 h_5$$ Query X b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈ No False Negatives! X $h_1 \mid h_2 \mid h_3 \mid \cdots \mid h_k$ $b_1 b_2 b_3 b_4 b_5 b_6 \cdots b_m$ False positives False positives *y*? $$h_1 \mid h_2 \mid h_3 \mid \cdots \mid h_k$$ $$b_1 b_2 b_3 b_4 b_5 b_6 \cdots b_m$$ False positives False positives False positives rate False positives rate ### Space/Time Trade-offs in Hash Coding with Allowable Errors Burton H. Bloom Computer Usage Company, Newton Upper Falls, Mass, Let ϕ'' represent the expected proportion of bits in the hash area of N'' bits still set to 0 after n messages have been hash stored, where d is the number of distinct bits set to 1 for each message in the given set. $$\phi'' = (1 - d/N'')^n. \tag{16}$$ A message not in the given set will be falsely accepted if all d bits tested are 1's. The expected fraction of test messages, not in M, which result in such errors is then $$P'' = (1 - \phi'')^{d}. \tag{17}$$ kn bund Space/Time Trade-offs in Hash Coding with Allowable Errors Burton H. Bloom Network Applications of Bloom Filters: A Survey Andrei Broder and Michael Mitzenmacher the probability of a false positive is $(1-\rho)^k \approx (1-p')^k \approx (1-p)^k.$ (17) (16)fall res, Mass. in the e been set to bund Mass. in the Burton H. Bloom IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006 Let d Net Bla # Longest Prefix Matching Using Bloom Filters Sarang Dharmapurikar, Praveen Krishnamurthy, and David E. Taylor, Member, IEEE be detected as a possible member of the set, all k bit locations generated by the hash functions need to be 1. The probability that this happens, f, is given by $$f = \left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k.$$ (1) the probability of a false posic. $(1-\rho)^k \approx (1-p')$ ### Space/Time Trade-offs in Hash Coding with ### Compressed Bloom Filters Michael Mitzenmacher, Member, IEEE we make the simplifying assumption of independence for ease of exposition.) The probability of a false positive is thus $$\left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \approx \left(1 - e^{-kn/m}\right)^k = (1 - p)^k.$$ suppens, $$f$$, is given by $$f = \left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k.$$ the probability of a false position $$(1-\rho)^k \approx (1-p^i)$$ (1) #### Space/Time Trade-offs in Hash Coding with #### Compressed Bloom Filters Michael Mitzenmacher. Member. IEEE we make the simplif Wrong! dependence for ease of exposition.) The probability of the positive is thus $$\left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \approx \left(1 - e^{-kn/m}\right)^k = (1 - p)^k$$ ppens, f, is given by $$f = \left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k.$$ $$(1 - p')$$ he probability of a land a (1) $(1-\rho)^k \approx (1-p)$ In 2008: Space/Time Trade-offs in Hash Coding with #### ON THE FALSE-POSITIVE RATE OF BLOOM FILTERS Prosenjit Bose Hua Guo Jason Morrison Evangelos Kranakis Michiel Smid Anil Maheshwari Yihui Tang Pat Morin School of Computer Science Carleton University {jit.hguo2.kranakis,maheshwa,morin,morrison,michiel,v_tang}@scs.carleton.ca $f = \left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k$ (1 - p') (1) In 2008: Space/Time Trade-offs in Hash Coding with #### ON THE FALSE-POSITIVE RATE OF BLOOM FILTERS Prosenjit Bose Hua Guo Jason Morrison Evangelos Kranakis Michiel Smid Anil Maheshwari Yihui Tang Pat Morin School of Computer Science Carleton University {iit.hguo2,kranakis.maheshwa.morin.morrison.michiel.y_tang}@scs.carleton.ca *still had errors! Hash functions as random oracles Certified False positive rate of Bloomfilters: $$\frac{1}{m^{k(l+1)}} \sum_{i=1}^{m} i^{k} i! \binom{m}{i} \begin{Bmatrix} kl \\ i \end{Bmatrix}$$ Deterministic # Can we generalize BFs? # Can we generalize BFs? Counting Bloomfilter $Bit \rightarrow Counter$ Bloomfilter Counting Bloomfilters Bloomfilter Counting Bloomfilters Bloomfilter Quotient Filters Counting Bloomfilters Bloomfilter Quotient Filters Counting Bloomfilters Bloomfilter Blocked Quotient Filter Quotient Filters Counting Bloomfilters Bloomfilter **Ver** Verification? Blocked Quotient Filter #### **Verifying AMQs** - Decomposition can be generalized - Massive proof reuse - Properties for free Query $h_1 h_2 h_3 h_4 h_5$ Insert Insert $h_1 h_2 h_3 h_4 h_5$ Insert Insert # Verifying AMQs The End