
GopCaml:

Kiran Gopinathan
National University of Singapore

A Structural Editor for OCaml

https://gitlab.com/gopiandcode/gopcaml-mode

https://gitlab.com/gopiandcode/gopcaml-mode


Let’s say you’re writing a function...



Let’s say you’re writing a function...

let map f = function
| [] -> []
| h :: t -> f h :: t



Let’s say you’re writing a function...

let map f = function
| [] -> []
| h :: t -> f h :: t

and need to change the definition...



Let’s say you’re writing a function...

let map f = function
| [] -> []
| h :: t -> f h :: t

and need to change the definition...



Let’s say you’re writing a function...

let rec map f = function
| [] -> []
| h :: t -> f h :: t

and need to change the definition...



Let’s say you’re writing a function...

let rec map f = function
| [] -> []
| h :: t -> f h :: t

and need to change the definition...

How can we provide

editor-support for this operation?



OCaml Editor Support



OCaml Editor Support

Emacs’ beginning-of-defun (C-M-a)



OCaml Editor Support

Emacs’ beginning-of-defun (C-M-a)

...but how should it be implemented?



OCaml Editor Support

...but how should it be implemented?

let f x = ...



OCaml Editor Support

...but how should it be implemented?

let f x =

let ... = ... in

...



OCaml Editor Support

...but how should it be implemented?

let f x =
let module ... = struct

...

end in
...



OCaml Editor Support

...but how should it be implemented?

let f x =
let module ... = struct

let ... = ...

end in
...



OCaml Editor Support

Not as simple as it seems...



OCaml Editor Support

Not as simple as it seems...

...what denotes an expression?



A fundamental dichotomy



A fundamental dichotomy



A fundamental dichotomy



A fundamental dichotomy

Syntactic Redundancy



A fundamental dichotomy

Lisp

Syntactic Redundancy



A fundamental dichotomy

Lisp ML-family

Syntactic Redundancy



A fundamental dichotomy

Lisp C & C-like ML-family

Syntactic Redundancy



A fundamental dichotomy

Lisp

+ Robust editor support

C & C-like ML-family

Syntactic Redundancy



A fundamental dichotomy

Lisp

+ Robust editor support

- Syntactically Noisy

C & C-like ML-family

Syntactic Redundancy



A fundamental dichotomy

Lisp

+ Robust editor support

- Syntactically Noisy

C & C-like ML-family

+ Clean and Concise syntax

Syntactic Redundancy



A fundamental dichotomy

Lisp

+ Robust editor support

- Syntactically Noisy

C & C-like ML-family

+ Clean and Concise syntax

- Ad-hoc editor support

Syntactic Redundancy



A fundamental dichotomy

Lisp

+ Robust editor support

- Syntactically Noisy

C & C-like ML-family

+ Clean and Concise syntax

- Ad-hoc editor support

Syntactic Redundancy

How can we get the

best of both worlds?



A fundamental dichotomy

Lisp

+ Robust editor support

- Syntactically Noisy

C & C-like ML-family

+ Clean and Concise syntax

- Ad-hoc editor support

Syntactic Redundancy

Track the syntax tree

from the editor!



Contributions

GopCaml: Generic Framework for Structural Editing

I Leverages OCaml compiler pipeline for faithful parsing

I Tracks Concrete-Syntax-Tree (CST) of edited file

I Defines common editing operations as CST transformations

GopCaml-mode: Emacs plugin using Gopcaml

I Robust and consistent OCaml support

I Seamless integration with Emacs workflows



Overview

1 A tour of GopCaml

2 Live demo

3 Under the hood

4 Future work



A tour of GopCaml

Move to definition

Structural navigation

Structural transposition

Structural deletion

Extract expression



A tour of GopCaml

Move to definition ( C-M-a )



A tour of GopCaml

Structural navigation ( C-M-{f,b} , C-M-{u,d} )



A tour of GopCaml

Structural transposition ( C-S-M-{f,b,u,d} , C-M-t )



A tour of GopCaml

Structural Deletion ( C-M-d , C-M-w )



A tour of GopCaml

Extract expression ( C-c C-e )



“Live” Demo!
Talk is cheap... Show us some code!



Under the hood

How does it work?



Under the hood

How does it work?

Tracking the CST



Under the hood

A small problem...



Under the hood

OCaml AST



Under the hood

OCaml AST
type expression = {

pexp_desc: ...;
...

}
and expression_desc =
| Pexp_ident of ...
| Pexp_let of ...
| Pexp_function of ...
| Pexp_fun of ...
| Pexp_apply of ...
...



Under the hood

OCaml AST
type expression = {

pexp_desc: ...;
...

}
and expression_desc =
| Pexp_ident of ...
| Pexp_let of ...
| Pexp_function of ...
| Pexp_fun of ...
| Pexp_apply of ...
...



Under the hood

OCaml AST
type expression = {

pexp_desc: ...;
...

}
and expression_desc =
| Pexp_ident of ...
| Pexp_let of ...
| Pexp_function of ...
| Pexp_fun of ...
| Pexp_apply of ...
...

Not suited for interactive traversal



Under the hood

Not suited for interactive traversal



Under the hood

Not suited for interactive traversal



Under the hood

Not suited for interactive traversal

Solution: Huet’s Zipper



Under the hood

A zipper for editing

type zipper =
| Top
| Node of {

item: t;
below: t list;
above: t list;
parent: zipper;
bounds: text_region;

}



Under the hood

A zipper for editing

type zipper =
| Top
| Node of {

item: t;
below: t list;
above: t list;
parent: zipper;
bounds: text_region;

}



Under the hood

A zipper for editing

type zipper =
| Top
| Node of {

item: t;
below: t list;
above: t list;
parent: zipper;
bounds: text_region;

}



Under the hood

A zipper for editing

type zipper =
| Top
| Node of {

item: t;
below: t list;
above: t list;
parent: zipper;
bounds: text_region;

}



Under the hood

A zipper for editing

type zipper =
| Top
| Node of {

item: t;
below: t list;
above: t list;
parent: zipper;
bounds: text_region;

}



Under the hood

A zipper for editing

type zipper =
| Top
| Node of {

item: t;
below: t list;
above: t list;
parent: zipper;
bounds: text_region;

}



Under the hood

A zipper for editing

type zipper =
| Top
| Node of {

item: t;
below: t list;
above: t list;
parent: zipper;
bounds: text_region;

}



Under the hood

A zipper for editing

type zipper =
| Top
| Node of {

item: t;
below: t list;
above: t list;
parent: zipper;
bounds: text_region;

}



Under the hood

A zipper for editing

type zipper =
| Top
| Node of {

item: t;
below: t list;
above: t list;
parent: zipper;
bounds: text_region;

}



Under the hood

A zipper for editing

type zipper =
| Top
| Node of {

item: t;
below: t list;
above: t list;
parent: zipper;
bounds: text_region;

}



Under the hood

A zipper for editing

type zipper =
| Top
| Node of {

item: t;
below: t list;
above: t list;
parent: zipper;
bounds: text_region;

}



Under the hood

A zipper for editing

type zipper =
| Top
| Node of {

item: t;
below: t list;
above: t list;
parent: zipper;
bounds: text_region;

}

>



Under the hood

A zipper for editing

type zipper =
| Top
| Node of {

item: t;
below: t list;
above: t list;
parent: zipper;
bounds: text_region;

}



Under the hood

A zipper for editing

type zipper =
| Top
| Node of {

item: t;
below: t list;
above: t list;
parent: zipper;
bounds: text_region;

}



Under the hood

A lazy zipper for editing

type t =
| Sequence of

text_region option * t list * t * t list
| Signature_item of Parsetree.signature_item
| Structure_item of Parsetree.structure_item
| Value_binding of Parsetree.value_binding
(* ... *)



Under the hood

A lazy zipper for editing

type t =
| Sequence of

text_region option * t list * t * t list
| Signature_item of Parsetree.signature_item
| Structure_item of Parsetree.structure_item
| Value_binding of Parsetree.value_binding
(* ... *)



Under the hood

A lazy zipper for editing

type t =
| Sequence of

text_region option * t list * t * t list
| Signature_item of Parsetree.signature_item
| Structure_item of Parsetree.structure_item
| Value_binding of Parsetree.value_binding
(* ... *)



Under the hood

A lazy zipper for editing

type t =
| Sequence of

text_region option * t list * t * t list
| Signature_item of Parsetree.signature_item
| Structure_item of Parsetree.structure_item
| Value_binding of Parsetree.value_binding
(* ... *)



Under the hood

A lazy zipper for editing

type t =
| Sequence of

text_region option * t list * t * t list
| Signature_item of Parsetree.signature_item
| Structure_item of Parsetree.structure_item
| Value_binding of Parsetree.value_binding
(* ... *)

How does it work?



Under the hood

Structural navigation

Structural transposition

Structural deletion



Under the hood

Structural navigation



Under the hood

Structural navigation



Under the hood

Structural navigation



Under the hood

Structural navigation



Under the hood

Structural navigation



Under the hood

Structural navigation



Under the hood

Structural navigation



Under the hood

Structural navigation



Under the hood

Structural navigation



Under the hood

Structural navigation



Under the hood

1 21

Structural transposition



Under the hood

1 21

Structural transposition



Under the hood

1 21

Structural transposition



Under the hood

1 21

Structural transposition



Under the hood

1 21

Structural transposition



Under the hood

2 12

Structural transposition



Under the hood

Structural deletion



Under the hood

Structural deletion



Under the hood

Structural deletion



Under the hood

Structural deletion



Under the hood

Structural deletion



Under the hood

Structural deletion



Under the hood

Structural deletion



Under the hood

Structural deletion



Under the hood

Structural deletion

How can we integrate this with an editor?



Under the hood
System Architecture

Emacs Editor

let map ..
match x..
| [] -> ..

| x :: xs

Code



Under the hood
System Architecture

An Emacs package...

...written in OCaml
using Ecaml

Emacs Editor

let map ..
match x..
| [] -> ..

| x :: xs

Code

Gopcaml mode



Under the hood
System Architecture

Emacs Editor

let map ..
match x..
| [] -> ..

| x :: xs

Code

Gopcaml mode



Under the hood
System Architecture

Emacs Editor

let map ..
match x..
| [] -> ..

| x :: xs

Code

Gopcaml mode
AST



Under the hood
System Architecture

Emacs Editor

let map ..
match x..
| [] -> ..

| x :: xs

Code

OCaml Parser

Gopcaml mode
AST



Under the hood
System Architecture

...100% faithful!Emacs Editor

let map ..
match x..
| [] -> ..

| x :: xs

Code

OCaml Parser

Gopcaml mode
AST



Under the hood
System Architecture

Emacs Editor

let map ..
match x..
| [] -> ..

| x :: xs

Code

OCaml Parser

Gopcaml mode
AST

Zipper



Under the hood
System Architecture

del(32,44)

...simple text operations

Emacs Editor

let map ..
match x..
| [] -> ..

| x :: xs

Code

OCaml Parser

Gopcaml mode
AST

Zipper



Under the hood
System Architecture

Emacs Editor

let map ..
match x..
| [] -> ..

| x :: xs

Code

OCaml Parser

Gopcaml mode
AST

Zipper



Under the hood
System Architecture

Core framework is generic over editor

VIM Editor

let map ..
match x..
| [] -> ..

| x :: xs

Code

OCaml Parser

Gopcaml mode
AST

Zipper



Overview

GopCaml: Generic Framework for Structural Editing

I Leverages OCaml compiler pipeline for faithful parsing

I Tracks Concrete-Syntax-Tree (CST) of edited file

I Defines common editing operations as CST transformations

GopCaml-mode: Emacs plugin using Gopcaml

I Robust and consistent OCaml support

I Seamless integration with Emacs workflows



Future work

Support for other editors (VIM, Neovim, VScode)

Robustness to invalid syntax (a la Merlin)

Semantic aware transformations

MetaOCaml Support



Interested?.... Try it out!

Install from OPAM:

opam install gopcaml-mode

Load in .emacs.d:

https://gitlab.com/gopiandcode/gopcaml-mode

(add-to-list 'load-path
"~/.opam/default/share/emacs/site-lisp")

(autoload 'gopcaml-mode "gopcaml-mode" nil t nil)
(add-to-list 'auto-mode-alist

'("\\.ml[ily]?$" . gopcaml-mode))

https://gitlab.com/gopiandcode/gopcaml-mode


Interested?.... Try it out!

Install from OPAM:

opam install gopcaml-mode

Load in .emacs.d:

...Profit!

https://gitlab.com/gopiandcode/gopcaml-mode

(add-to-list 'load-path
"~/.opam/default/share/emacs/site-lisp")

(autoload 'gopcaml-mode "gopcaml-mode" nil t nil)
(add-to-list 'auto-mode-alist

'("\\.ml[ily]?$" . gopcaml-mode))

https://gitlab.com/gopiandcode/gopcaml-mode

