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How can we provide

editor-support for this operation?
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A fundamental dichotomy

Lisp

+ Robust editor support

- Syntactically Noisy

C & C-like ML-family

+ Clean and Concise syntax

- Ad-hoc editor support

Syntactic Redundancy

Track the syntax tree

from the editor!



Contributions

GopCaml: Generic Framework for Structural Editing

I Leverages OCaml compiler pipeline for faithful parsing

I Tracks Concrete-Syntax-Tree (CST) of edited file

I Defines common editing operations as CST transformations

GopCaml-mode: Emacs plugin using Gopcaml

I Robust and consistent OCaml support

I Seamless integration with Emacs workflows



Overview

1 A tour of GopCaml

2 Live demo

3 Under the hood

4 Future work
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A tour of GopCaml

Structural Deletion ( C-M-d , C-M-w )



A tour of GopCaml

Extract expression ( C-c C-e )



“Live” Demo!
Talk is cheap... Show us some code!
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Solution: Huet’s Zipper
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Under the hood
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Structural transposition
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Under the hood

Structural deletion

How can we integrate this with an editor?
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GopCaml: Generic Framework for Structural Editing

I Leverages OCaml compiler pipeline for faithful parsing
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Future work

Support for other editors (VIM, Neovim, VScode)

Robustness to invalid syntax (a la Merlin)

Semantic aware transformations

MetaOCaml Support
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Install from OPAM:

opam install gopcaml-mode

Load in .emacs.d:
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(add-to-list 'load-path
"~/.opam/default/share/emacs/site-lisp")

(autoload 'gopcaml-mode "gopcaml-mode" nil t nil)
(add-to-list 'auto-mode-alist

'("\\.ml[ily]?$" . gopcaml-mode))
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